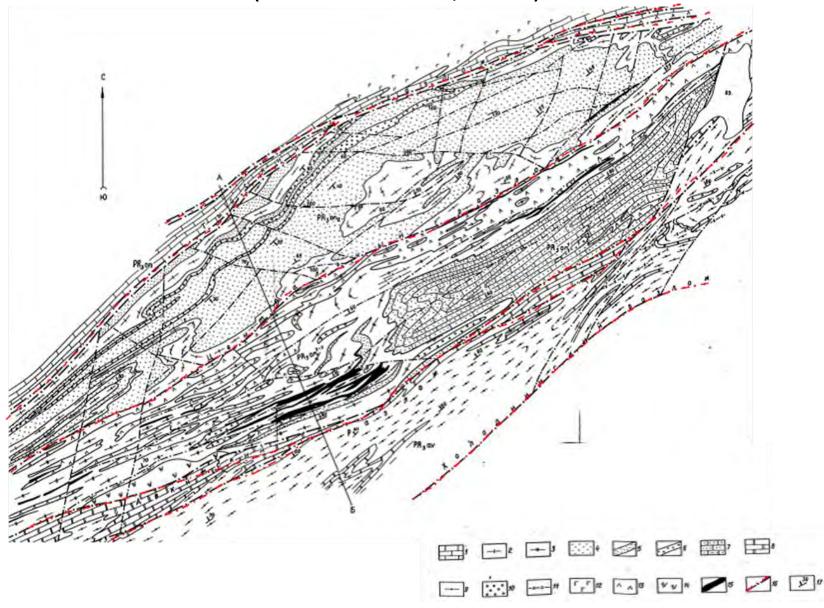

Negative Impact of Audit and Mining Water at Holodninsky Mine on Surrounding Water Sites

Plusnin A.M.

Geological Institute Ulan-Ude, Russia Holodninski site is 70 km from the northern point of Lake Baikal, which is still its water collecting area (black line shows the route from Ulan-Ude to the site by car).



Deposit is situated in the southern part of Nothern-Baikal highland, which is a part of watershed of rivers Tii and Holodnaja. A part of the deposit is in the valley of the river Holodnaja. The site region is charachterized by intense diversity of relief, with picks above valleys as high as 300 to 500 m. The area where detailed geological survey was conducted is situated in the limits of absolute markers 1000-1100 m.

Panarama of the valley of the river Holodnaja

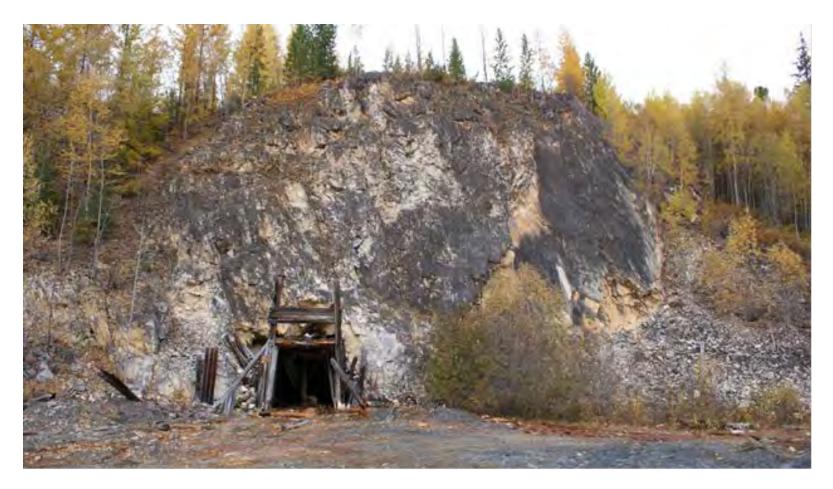
Geological Structure of Holodninski deposit (Distanov et. al., 1982)

Composition of microelements of water in the river Holodnaja in the region of Holodninsky pollymetalic mine

№ п/п	Химическ ий элемент, мкг/л	XB – 6 56°12,893', 109°52,046'	XB – 4 56°12,893', 109°52,046'	XB – 8 56º06,040', 109º43,815'	
		400 м выше по течению от места расположения отвалов штольни	10 м ниже впадения ручья из штольни	3 км ниже по течению от впадения ручья из штольни	
1	Cr	0.21	0.10	0.24	
2	Mn	20.78	17.43	6.16	
3	Fe	21.13	3.98	20.64	
4	Со	0.15	0.08	0.05	
5	Ni	3.68	0.69	0.86	
6	Cu	4.81	1.84	4.32	
7	Zn	1458.34	368.45	103.47	
8	As	1.19	5.48	1.16	
9	Cd	0.29	0.11	0.11	
10	Та	0.0010	0.0006	0.0009	
11	Pb	0.29	0.33	0.25	

Composition of microelements of water in the stream Avkitsky

		XB – 7 56°13,275', 109°50,609'	XB – 3 56°13,075', 109°52,056'		
№ п/п	Химический элемент, мкг/л	Верховье ручья, у моста возле дороги к п. Перевал	Нижняя часть ручья, в 50 м выше устья, находиться в зоне влияния отвалов пород		
1	Cr	0.25	0.2589		
2	Mn	4.0405	12.2713		
3	Fe	46.0248	14.9031		
4	Со	0.0715	0.1710		
5	Ni	1.1920	2.0947		
6	Cu	2.1856	11.5946		
7	Zn	70.1749	354.4906		
8	As	0.2809	3.0485		
9	Cd	0.0942	0.1732		
10	Та	0.0013	0.00001		
11	Pb	0.2848	0.1247		


The area of study is located at the steep slope of the valley of the river Holodnaja, where the two adits are situated. The first audit is at 940 M, the second— at 850 M. As the result of constructing an audit, there was 90000 M^3 of rock excavated to the surface and piled at two locations.

Audit №1

The entry into the second audit is 40 M high and 100 M wide. The area in front of the audit is $50 \times 100 \text{ M}$ and is partially covered with rock waste from audit.

Adit №2

Rock waste and mine water at Audit N_{2}

Rock waste is enriched by miniralisation. These minerals appear as white, yellow and brown deposits over the entire area. Chemical analysis as well as structural analysis show the presence of certain elements: magnesium, zink, starhit, etc.

Mining water surfaces from the audits, which in turn run into the river Holodnaja. A portion of water from the audits runs as ground water

Mining water from Audit №1

Mining water from Audit №2

Characteristics of mine water from the adits

№ пр.	Место	Породы	Дебит	Температур	pН	Сухой	
	отбора			a		остаток,	
	пробы,					мг/дм ³	
	координаты						
191	Рудничные	Метаморфическ	ОГ	пробование 21	.04.2007		
	воды из	ие сланцы,	0,3 л/сек	2,1°C	7,2	821,21	
w-1	штольни	кварциты,	OI	пробование 12	.09.2007		
	Nº1	карбонаты	5 л/сек	0,8 °C	7.1		
хв-1	N		опробование 19.09.2013				
	56°13.483'		1,3 л/сек	3,9 °C	7,24	736,0	
	E				.,		
	109°52.196'						
192	Рудничные	Метаморфическ	опробование 21.04.2007				
	воды из	ие сланцы,	50 л/сек	4,1°C	7,1	477,99	
w-2	штольни	известняки	OI	пробование 12	.09.2007		
	N <u>∘</u> 2		110 л/сек	1,9 °C	7.07		
хв-2	Ν	опробование 19.09.2013					
	56°13.352'		30 л/сек	5,6 °C	7,15	485,0	
	E						
	109°52.527'						

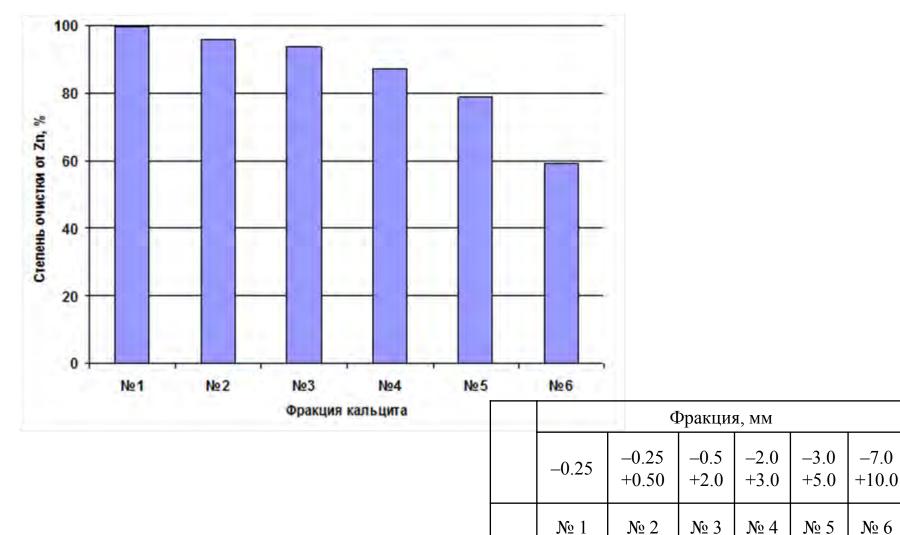
Concentration of toxic elements in mining water, running from the audits at Holodninsky mine ($M\kappa\Gamma/$ д M^3) (19.09.2013 г)

Defining parameter	Stream from Audit №1	Stream from Audit №2	Stream of Audit №2,	ПДК in the streams running into the Lake Baikal in the central area	for the fishing
Дебит, л/сек	1,3	30,0	7,0		
Li	4,91	2,24	2,24		
Sr	501,44	626,37	601,25		
Cr	0,094	0,067	0,058	8	90
Mn	969,79	494,07	835,31		10
Fe	420,06	12,36	4,07	200	100
Со	18,39	4,02	3,81		10
Ni	29,39	9,52	10,90	8	10
Cu	1,44	5,41	2,25	8	1
Zn	21104,09	5491,05	6994,42		10
As	0,227	1,597	1,359		
Cd	9,15	0,81	1,90		0,5
Та	0,001	0,0003	0,0005		
Pb	0,238	0,105	0,161		10

Chemical composition of deposits at the bottom of the streams, running from the audits, %.

Компонент	Донные отложения в ручье,	Донные отложения в ручье,	Донные отложения в устье
	вытекающем из щтольни №1, хд-1	вытекающем из щтольни №2,	ручья из штольни №2,
		хд-2	хд-5в
SiO2	31,16	12,55	12,98
TiO2	0,413	0,105	0,144
Al2O3	9,1	1,68	3,1
Fe2O3 общ.	26,92	34,72	23,9
MnO	0,409	3,974	1,126
MgO	2,04	1,142	0,797
CaO	1,708	2,637	2,135
Na2O	1,15	2,07	4,26
K2O	1,314	0,336	0,269
P2O5	0,123	0,046	0,088
П.П.П	20,29	22,43	27,81
сумма	94,627	81,69	76,609
V	0,0085	0,0028	0,0034
Cr	0,0079	0,0030	0,0036
Ni	0,0023	0,0044	0,0041
Cu	0,0091	0,0091	0,0050
Zn	2,13	7,77	19,15
As	0,0050	0,0238	0,0108
Pb	0,2182	0,0877	0,0282
Ba	0,0870	0,230	0,0869
Cd	0,0040	0,0053	0,0075
SO3	2,95	0,7	0,4
Cl	0,2	0,1	0,1
Нд (мг/кг)	0,866	0,524	0,096

In laboratory conditions, we studied the sorption ability of limestone, which is located near the mine.


Experiments were conducted in static as well as dynamic conditions

We studied the sorption ability of various kinds of limestone in relation to the heavy metals.

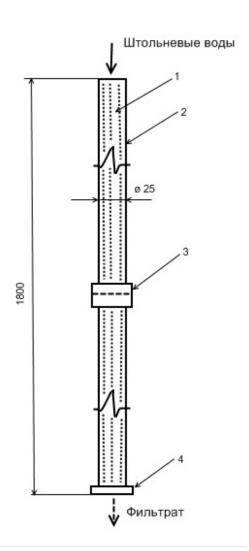
The rate of treatment of mine water in static and dynamic conditions is determined.

Some of the results are presented below

Results of experiment of sorption of zink by calcite(50 Γ/Λ) in static conditions during 6 hours

Nº 1

<u>№</u> 2


<u>№</u> 6

Treatment rate of ions of manganese during 6 hour contact

	1 1	г/л	10	10 г/л 20 г/л 50 г/л		г/л		
Образцы	мг∕л*	степень очистки %	мг∕л*	степень очистки %	мг∕л*	степень очистки %	мг∕л*	степень очистки %
Nº 1	0.2093	42.92	0.0107	97.08	0.0010	99.73	0.002	99.40
Nº 2	0.3065	16.41	0.2432	33.68	0.1790	51.18	0.1294	64.71
Nº 3	0.3130	14.64	0.2846	22.39	0.2537	30.81	0.1430	61.00
<u>№</u> 4	0.3119	14.94	0.2884	21.35	0.2505	31.69	0.1990	45.73
Nº 5	0.3185	13.14	0.2839	22.58	0.2667	27.27	0.2048	44.15
Nº 6	0.3171	13.52	0.2697	26.45	0.2909	20.67	0.2465	32.78

Schema of experimental structure and results of treatment of mine water from some metals in dynamic conditions (mass of sorbent 800 g, mine water 1000

ml)

я вода,	Динамический режим		
элемент штольневая мг/л		степень очистки	
3.19800	0.0031	99.90	
0.36670	0.00060	99.83	
1.03850	0.00125	99.88	
0.00410	0.00155	62.19	
0.01130	0.0023	79.65	
0.00300	0.0004	86.66	
	0.36670 1.03850 0.00410 0.01130	3.19800 0.0031 0.36670 0.00060 1.03850 0.00125 0.00410 0.00155 0.01130 0.0023 0.0004 0.0004	

Conclusions, Recommendations

There are two ways to isolate liquid conteminants, which resulted from the work at Holodninsky, from

the environment– change them into insoluble elements at the site or close the access to the audit and cut them off from getting to the surface.

Premises:

- 1. It's been determined that limestone известняк absorbs ions of heavy metals from mining water
- 2. It is possible to create a geochemical barrier at Holodninsky near drainage of mining water from adits according to the stages of treatment all the way to the point of quality of use in the fishing industry.
- 3. Isolate adit water from mining, by using concrete blocks and filling empty spaces with rock material from adit. Install concrete blocks beyond the line of multi-year-iced material and within the limits of crystallized dry material at a distance of 70-100 μ from adit.
- 4. Reclamation of rocky areas should be done at their location; create compact deposits at the slopes. Next, cover them with iced substance and then with peat in order to keep the waste in iced condition.

Спасибо за внимание!

